WLAN 802.11n MIMO Analysis

June 17, 2010

Rolf Leutert

Network Consultant & Trainer | Leutert NetServices | Switzerland

SHARKFEST '10 Stanford University June 14-17, 2010

Session Agenda

- Design Goals for 802.11n
- IEEE 802.11n physical layer improvements
- IEEE 802.11n MAC layer improvements
- Per-Packet Information Header
- Analysing 'Bad BAR' and 'Deadlock' problem
- Bandwidth Measurement
- Backwards compatibility to a/b/g
- Future of 802.11n

Design Goals for 802.11n

- IEEE 802.11n is a proposed amendment to the IEEE 802.11-2007 wireless networking standard
- Significantly improve PHY layer transmission rate over previous standards, such as 802.11a and 802.11b/g with 'High Throughput' (HT) options
- Increasing the MAC layer transfer rate to achieve a minimum of 100 Mbps data throughput
- Maintain backward compatibility with existing IEEE WLAN legacy solutions (802.11a/b/g)

How the Goals are achieved

- A combination of technical functions at PHY and MAC layers are added to the existing 802.11 standard:
- ✓ Increasing the physical transfer rate with new modulation scheme and timing up to 600Mbps
- New multi-streaming modulation technique using MIMO (multiple input, multiple output antennas)
- Joining two adjacent channels with Channel bonding
- ✓ Support for frame aggregation A-MPDU & A-MSDU
- New Block Acknowledgments

PHY layer improvements

Modified OFDM

The number of OFDM data sub-carriers is increased from 48 to 52 which improves the maximum throughput from 54 to 58.5 Mbps

Forward Error Correction

FEC is a system of error control whereby the sender adds redundant data to allow the receiver to detect and correct errors. 3/4 coding rate is improved with 5/6 boosting the link rate from 58.5 to 65 Mbps

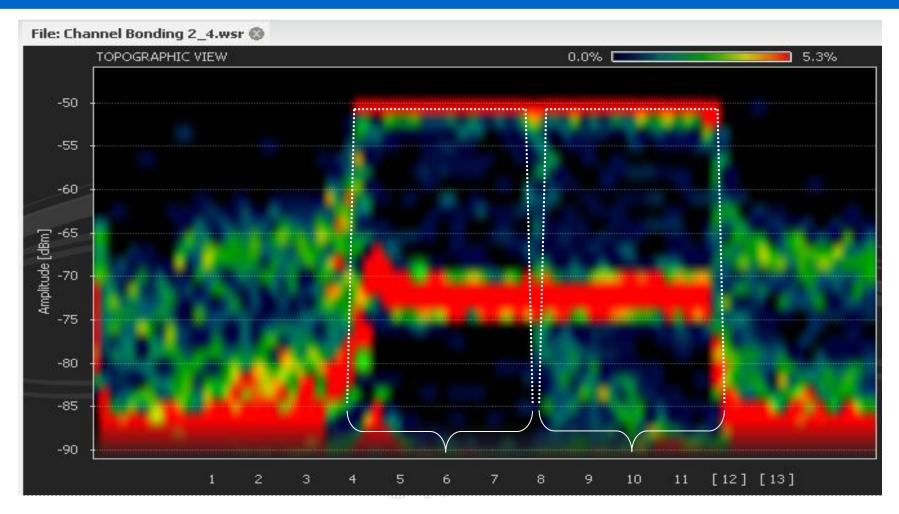
PHY layer improvements (cont.)

Shorter Guard Interval (GI)

The GI between OFDM symbols is reduced from 800ns to 400ns and increases throughput from 65 to 72.2 Mbps

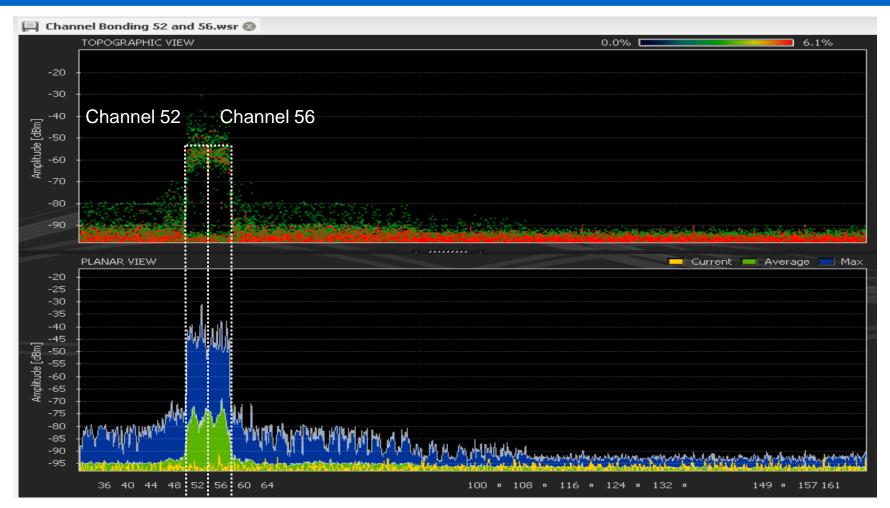
Channel Bonding

Doubling channel bandwidth from 20 to 40 MHz slightly more than doubles rate from 72.2 to 150 Mbps


Spatial multiplexing

Support of up to four spatial streams (MIMO) increases throughput up to 4 times 150 to 600 Mbps

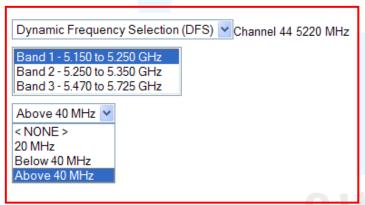
Channel Bonding (Channel 6 & 10)

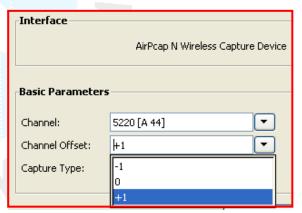


Recorded with Wi-Spy® from MetaGeek

Channel Bonding (Channel 52 & 56)

Recorded with Wi-Spy® from MetaGeek




Channel Bonding (configuration)

802.11n supports bundling of two 20 MHz channels

- Select a control channel # and the channel offset
- Both channels must fit inside allowed frequency range
- A-band does not allow to select channel # manually

Configuration on AirPcap N

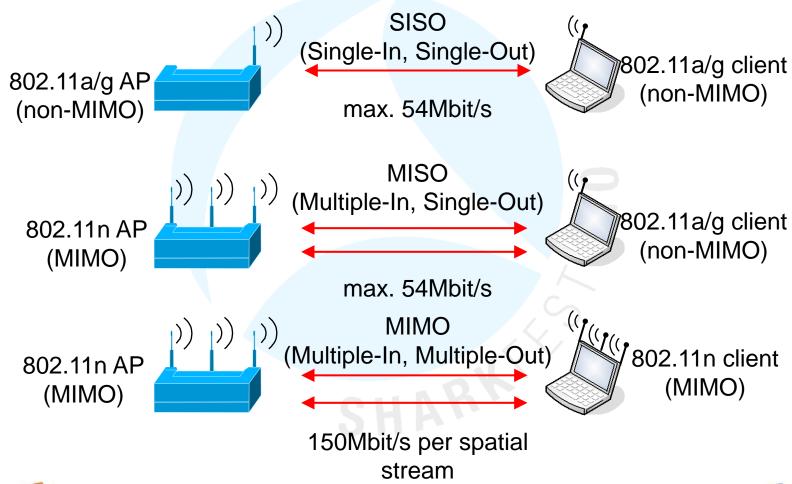
Channel Allocation 5GHz Band

Frequency Band	Channel ID	FCC (GHz)	ETSI (GHz)	MKK (GHz)
	2.4			E 470
	34			5.170
	36	5.180	5.180	
Lower	38			5.190
Band	40	5.200	5.200	
UNII-1	42			5.210
01111-1	44	5.220	5.220	
	46			5.230
	48	5.240	5.240	
Middle	52	5.260*	5.260	5.260
Band	56	5.280*	5.280	5.280
UNII-2	60	5.300*	5.300	5.300
01111-2	64	5.320*	5.320	5.320
	100	E E0.0*	E E00	E E O O
		5.500*	5.500	5.500
	104	5.520*	5.520	5.520
	108	5.540*	5.540	5.540
High	112	5.560*	5.560	5.560
Band	116	5.580*	5.580	5.580
UNII-2	120	5.600*	5.600	5.600
extended	124	5.620*	5.620	5.620
	128	5.640*	5.640	5.640
	132	5.660*	5.660	5.660
	136	5.680*	5.680	5.680
	140	5.700*	5.700	5.700
	149	5.745		
Upper	153	5.765		
Band	157	5.785		
UNII-3/ISM	161	5.805		
ISM	165	5.825		

Available non-overlapping channels							
FCC (USA and Canada) 24							
ETSI (Europe)	19						
MKK (Japan)	19						

Transmit Power Control (TPC) required for							
FCC (USA and Canada)	Band 2,2e						
ETSI (Europe)	Band 1,2,2e						
MKK (Japan)	Band 1,2,2e						

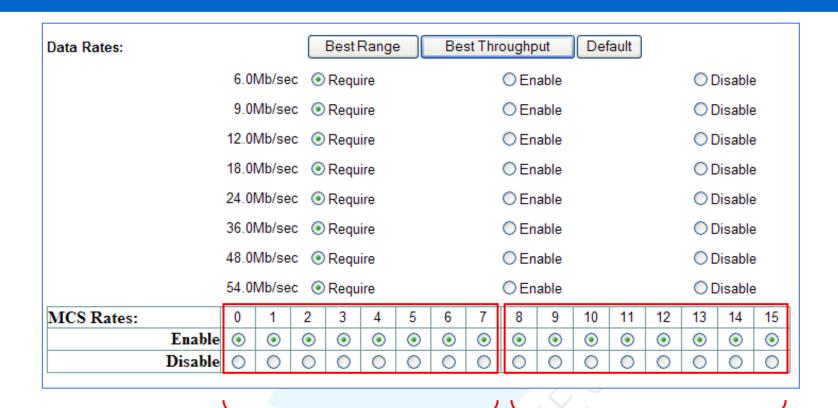
Dynamic Frequency Selection (DFS) required for							
FCC* (USA and Canada)	Band 2,2e						
ETSI (Europe)	Band 1,2,2e						
MKK (Japan)	Band 1,2,2e						


Some channels only allowed for inhouse use

*New stricter FCC DFS2 rules valid off July 20, 2007

Multi-Streaming Modulation

Modulation Coding Scheme (MCS)


802.11n introduces a new Modulation Coding Scheme

- 802.11 b/g adapts to channel conditions by selecting the highest of 12 possible rates from 1 to 54 Mbps
- The 802.11n standard will allow some 77 possible MCS' some compulsory, some optional
- MCS selects, based on RF channel conditions, the best combination of 8 data rates, bonded channels, multiple spatial streams, different guard intervals and modulation types

MCS Configuration

1 spatial stream

2 spatial streams

Screenshot Cisco AP1250

MCS Rate Chart

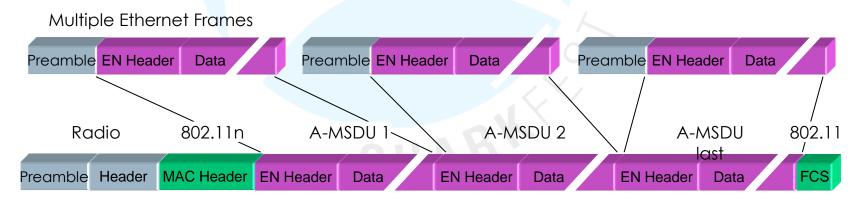
		20 MHz Channel									40 MHz Channel						
MCS Rate Chart				ream MIMO)		2 Streams (MIMO)			1 Stream (non MIMO)			2 Streams (MIMO)					
000 44	MCS Rate	0	1	2	3	8	9	10	11								
802.11n 2.4GHz	Mbps	6.5	13	19.5	26	13	26	39	52	n.a.				n.a.			
GI = 800 ns		39	52	58.5	65	78	104	117	130								
01 - 000113	MCS Rate	4	5	6	7	12	13	14	15								
	•																
802.11n	MCS Rate	0	1	2	3	8	9	10	11	0	1	2	3	8	9	10	11
502.1111 5GHz	Mhna	6.5	13	19.5	26	13	26	39	52	13.5	27	40.5	54	27	54	81	108
GI = 800 ns	Mbps	39	52	58.5	65	78	104	117	130	81	108	121.5	135	162	216	243	270
GI - 600115	MCS Rate	4	5	6	7	12	13	14	15	4	5	6	7	12	13	14	15
'																	
802.11n	MCS Rate	0	1	2	3	8	9	10	11	0	1	2	3	8	9	10	11
502.11h	Mhna	7.2	14.4	21.7	28.9	14.4	28.9	43.3	57.8	15	30	45	60	30	60	90	120
GI = 400 ns	Mbps	43.3	57.8	65	72.2	86.7	115.6	130	144.4	90	120	135	150	180	240	270	300
GI = 40011S	MCS Rate	4	5	6	7	12	13	14	15	4	5	6	7	12	13	14	15

MAC layer improvements

Frame Aggregation Mechanisms

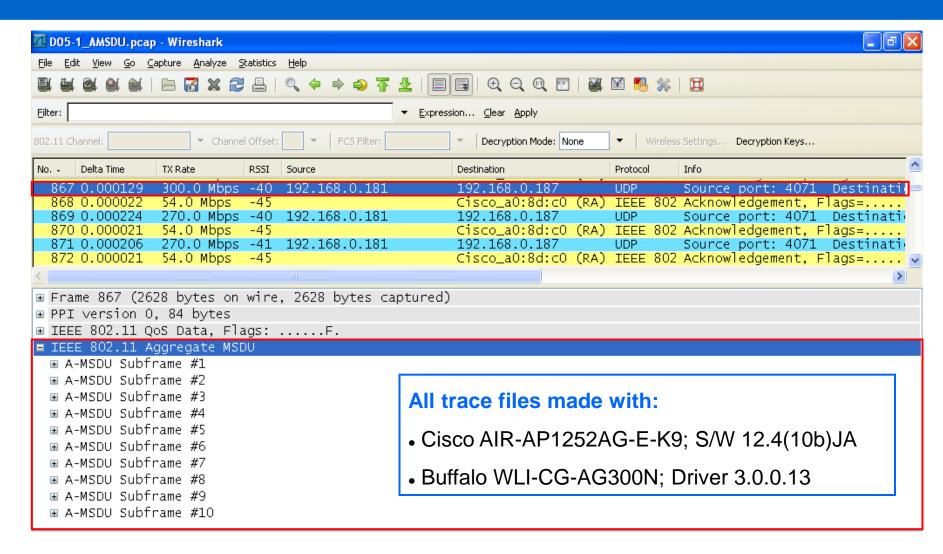
- Aggregate-MAC Service Data Unit (A-MSDU) wraps multiple Ethernet frames in a .11n frame up to 8KB
- Aggregate-MAC Protocol Data Unit (A-MPDU) allows bursting 802.11 frames up to 64KB
- A-MPDU is performed in the software whereas A-MSDU is performed in the hardware

Block Acknowledgement


Block ACK effectively eliminates the need to initiate a new transfer for every MPDU

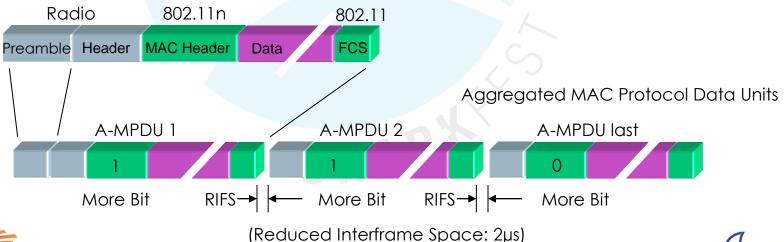
MSDU Aggregation

- Multiple Ethernet frames for a common destination are wrapped in a single 802.11 frame
- More efficient than A-MPDU as only one radio- and 802.11 MAC header is applied
- Whole frame must be retransmitted if no acknowledge

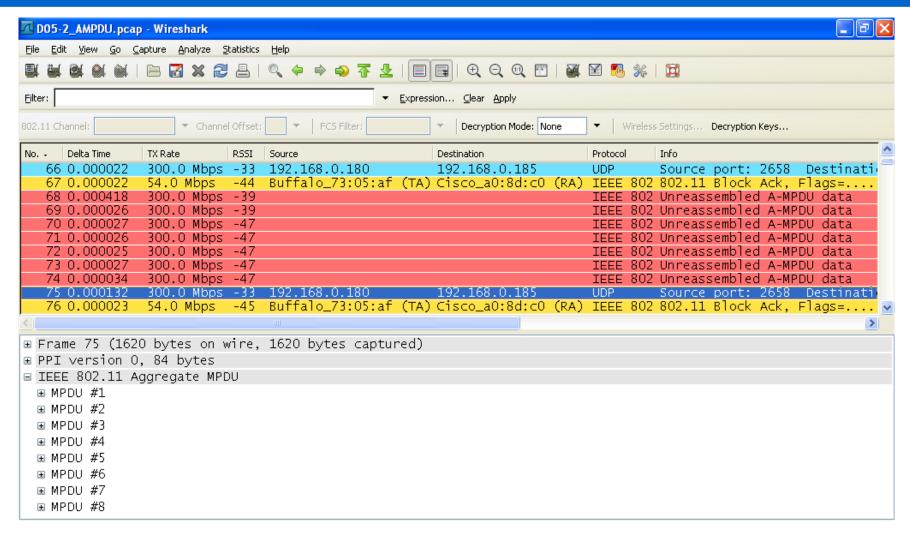


Aggregated MAC Service Data Units

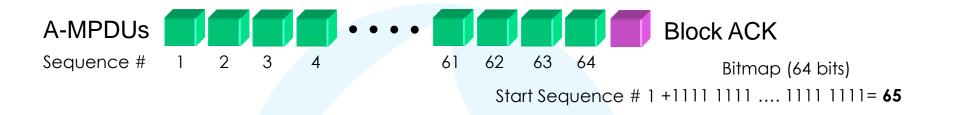
A-MSDU Analysis

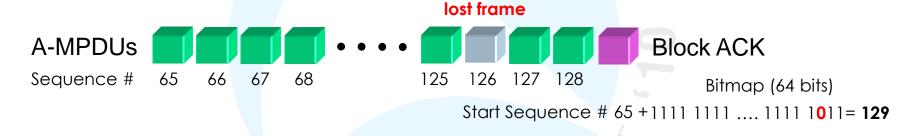


MPDU Aggregation

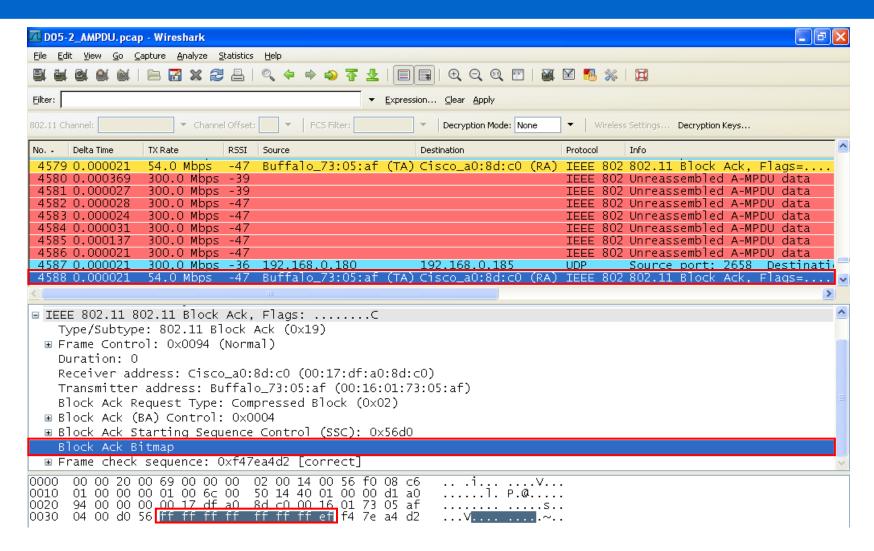

- Multiple Ethernet frames for a common destination are translated to 802.11 format and sent as burst
- Elements of an A-MPDUs burst can be acknowledged individually with one single Block-Acknowledge
- Only not-acknowledged A-MPDUs are retransmitted

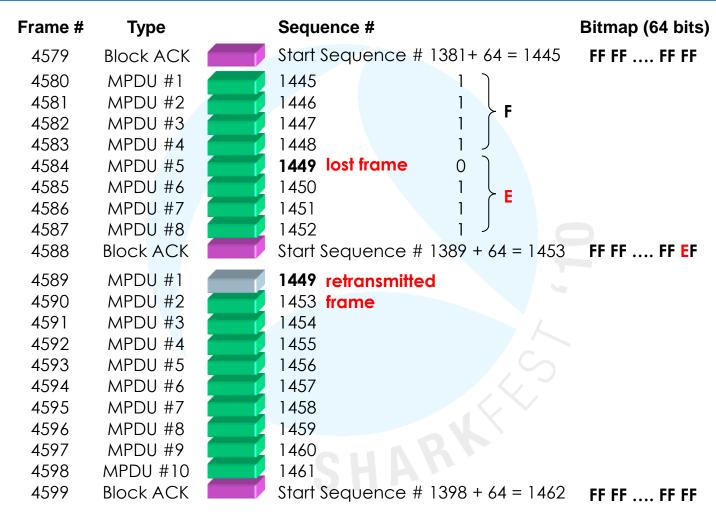
A-MPDU Analysis


Block-ACK Mechanism

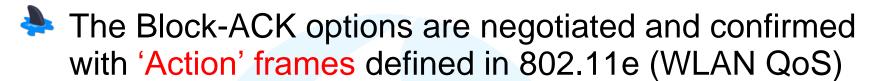

- Rather than sending an individual acknowledge following each data frame, 802.11n introduces the technique of confirming a burst of up to 64 frames with a single Block ACK (BA) frame
- The Block ACK even contains a bitmap to selectively acknowledge individual frames of a burst (comparable to selective acknowledges of TCP)
- The use of combined acknowledges can be requested by sending a Block ACK Request (BAR)

Block-ACK Mechanism (cont.)



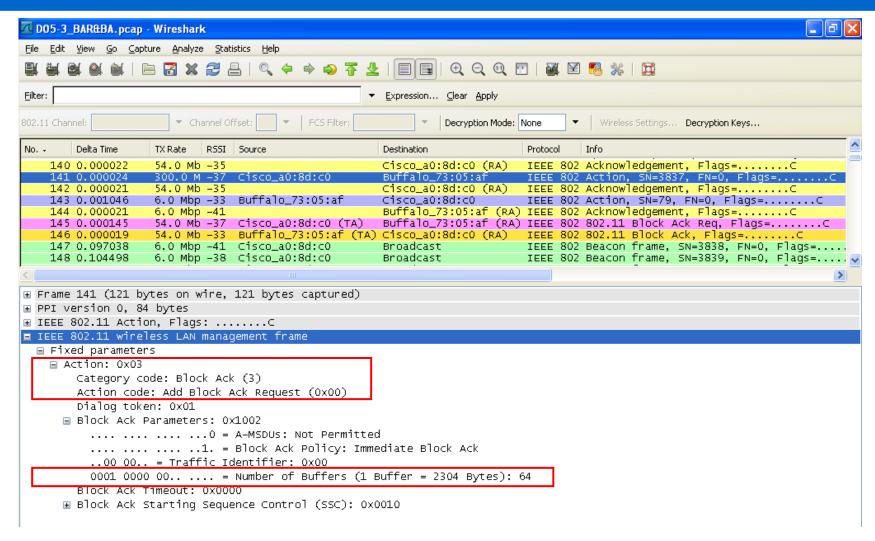

Block-ACK Bitmap Analysis

Block-ACK Bitmap Analysis (cont.)

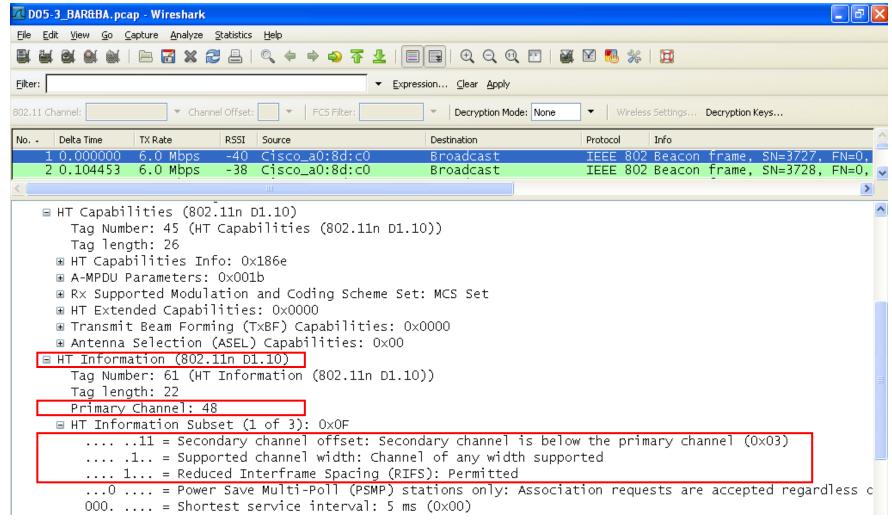


Trace file: D05_AMPDU.pcap

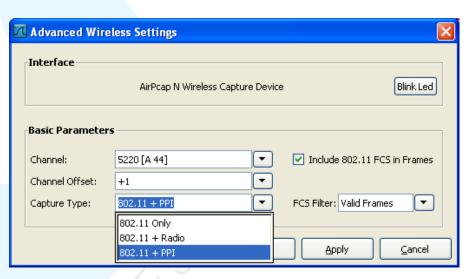
Block-ACK negotiation/activation



- Action frames are used to negotiate other options too
 - Category Code 0 = Spectrum management
 - Category Code 1 = QoS options
 - Category Code 2 = DLS (Direct Link Setup)
 - Category Code 3 = Block Ack
- The use of combined acknowledges can be requested by sending a Block ACK Request (BAR)


Block-ACK negotiation/activation (cont.)

New HT Capabilities in Beacon Frame

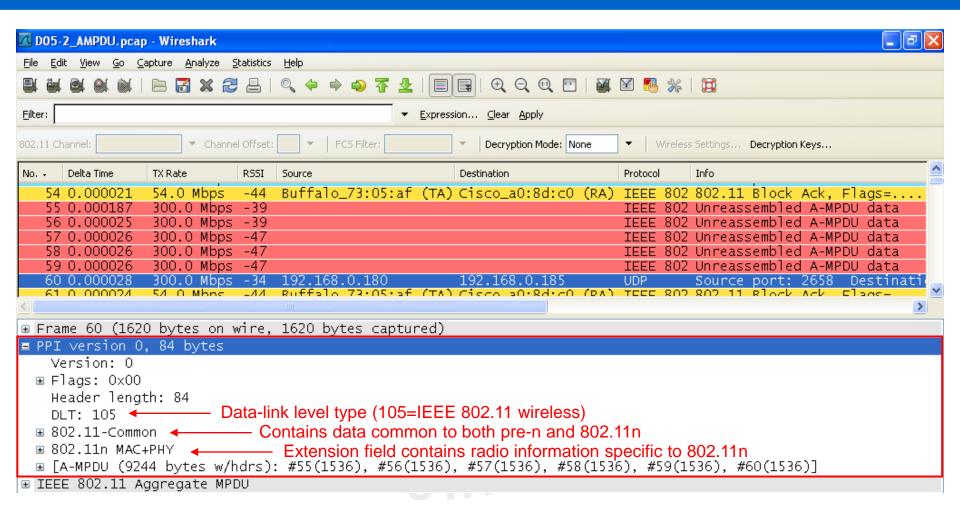


Per-Packet Information Header (PPI)

New PPI header replaces the radiotap header used in 802.11a/b/g with additional 802.11n radio information

PPI adds a pseudoheader to each packet and provides Meta data about RF signal strength, timing, options etc.

References


Radiotap manual: http://netbsd.gw.com/cgi-bin/man-cgi?ieee80211_radiotap+9+NetBSD-current

PPI manual: http://www.cacetech.com/documents/PPI Header format 1.0.1.pdf

Per-Packet Information Header (cont.)

Per-Packet Information Header (cont.)

```
■ 802.11n MAC+PHY
  Field type: 802.11n MAC+PHY Extensions (4)
  Field length: 48
 ■ MAC flags: 0x00000016
          .... .... .... .... .... greenfield flag: False
      .... .... .... .... ... ... .1. = HT20/HT40 flag: HT40
   .... .... .... (SGI) flag: True
   .... .... .... .... .... 0... = Duplicate RX flag: False
   .... .... = Aggregate flag: True
   .... = More aggregates flag: False
   0... = Debug Flag (more desc): False
  AMPDU-ID: 0x000131cd
  Num-Delimiters: 0
  MCS: 15
  Number of spatial streams: 2
  RSSI combined: 62
  Antenna O control RSSI: 53
  Antenna 1 control RSSI: 58
  Antenna 2 control RSSI: 58
  Antenna 3 control RSSI: 255 [invalid]
  Antenna O extension RSSI: 55
```

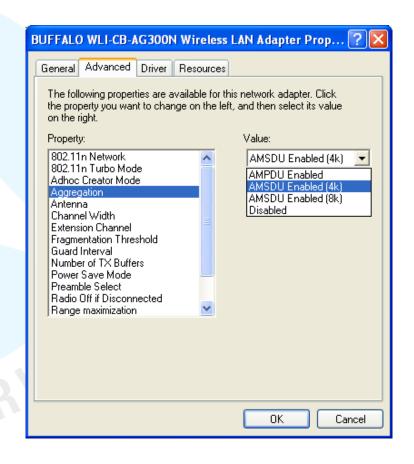

AirPcap Nx and Wireshark

AirPcap Nx and Wireshark is the perfect combination for:

- Learning about how things are functioning
- Finding out what 802.11n options and capabilities are offered and negotiated in the air
- Verifying vendor specifications (like throughput etc.)
- Investigating compatibility issues between vendors
- Training technical people
- and much more...

Frame Aggregation (config. examples)

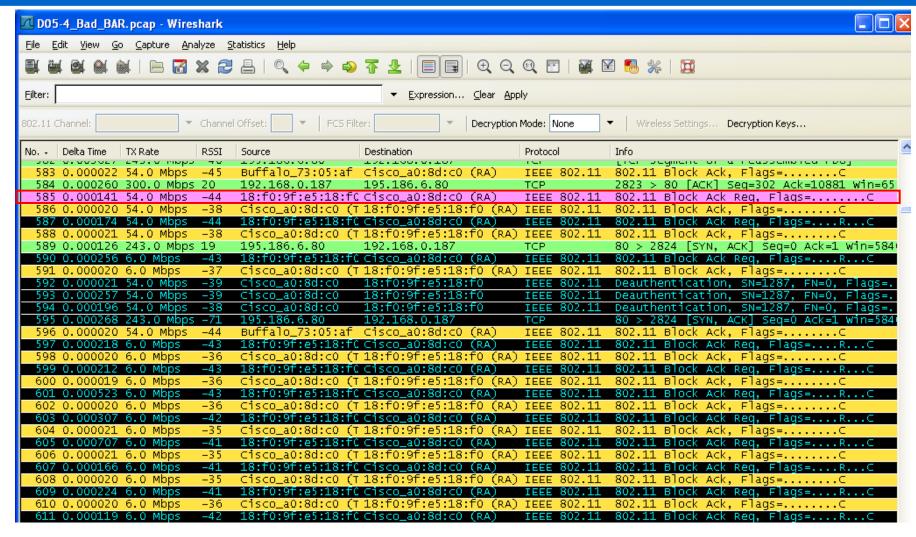
Cisco's 802.11abgn AP1250



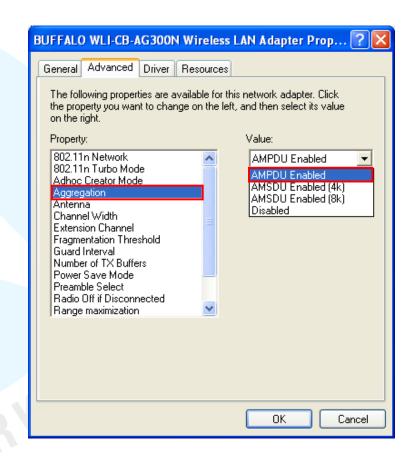
By disabling A-MPDU with the 'no' command, the traffic associated with that priority level uses A-MSDU transmission

Command line interface:

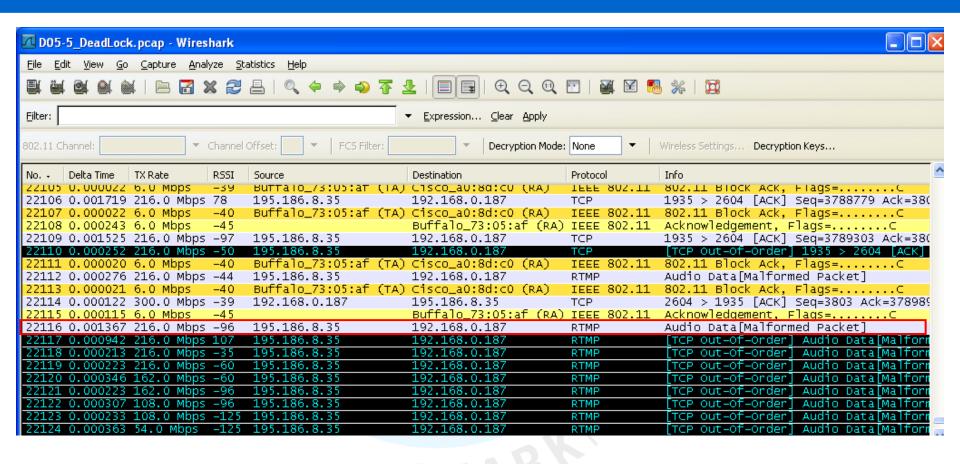
ap1250(config)#interface dot11Radio 1 ap1250(config-if)#no ampdu transmit priority 0


Buffalo's 802.11abgn PC-Card

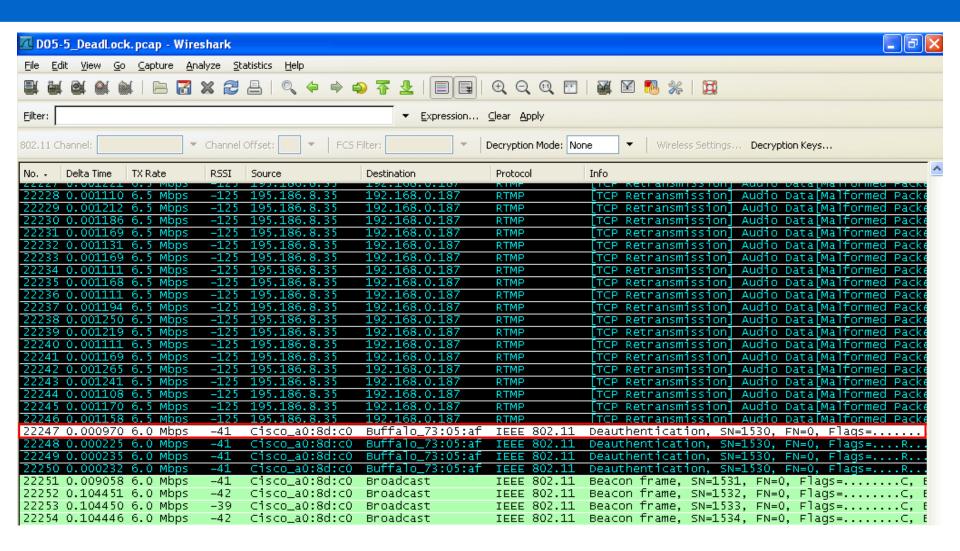
Analysing 'Bad BAR' problem



Analysing 'Bad BAR' problem (cont.)

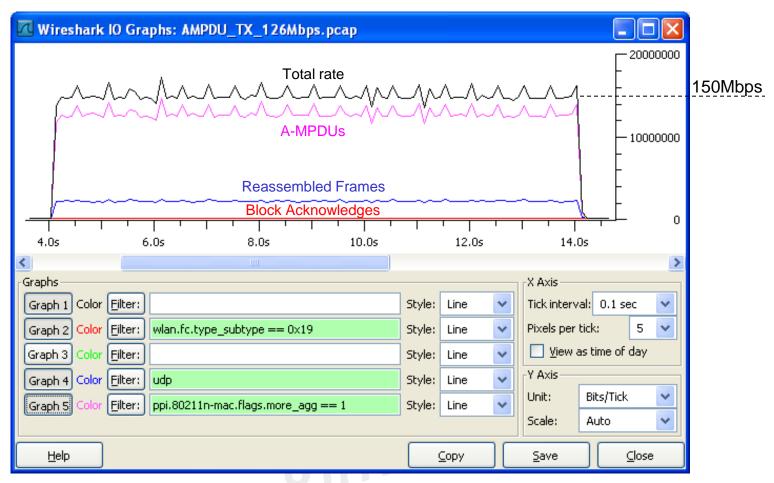

- Buffalo WLI-CB-AG300N is using strange SRC MAC address when sending BAR
- Problem occurs only when A-MPDU is activated
- Problem seems to be related to retransmissions
- Possibly a driver issue as A-MPDU is done in software
- A-MSDU works fine

Analysing 'Deadlock' problem



Problem starts at frame # 22116 which is not acknowledged by receiver

Analysing 'Deadlock' problem (cont.)


Analysing 'Deadlock' problem (cont.)

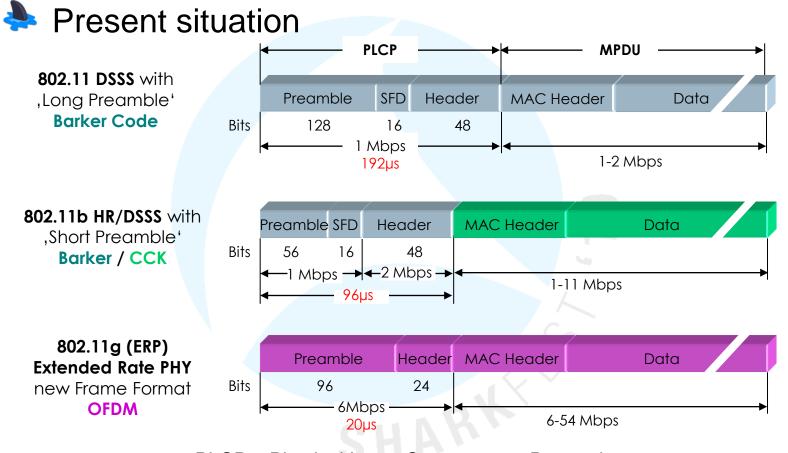
- Access point retransmits frame 128 times up to frame # 22246 (value of Max. Data Retries counter)
- As the mobile station does not acknowledge, access point sends 'Deauthentication' in frame # 22247 and removes station from association list
- As mobile station does not acknowledge again, access point retransmits in frames # 22248 to 22250
- Mobile station does not acknowledge, assumes to be still associated with access point and keeps sending frames (# 22298, 22315 etc.) → Deadlock situation

Bandwidth Measurement

UDP bandwidth measurement with **IPerf** indicates throughput of 126Mbps

Backwards compatibility to a/b/g

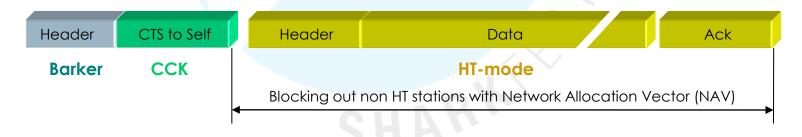
Present situation


Mbps	Coding	Description		
1 2	Barker Code Barker Code	802.11 DSSS (Clause 15) with ,Long Preamble'		
5.5 11	CCK CCK	802.111 HR/DSSS (Cla with ,Short Pre	use 18)	
6 9 12 18 24 36 48 54	OFDM OFDM OFDM OFDM OFDM OFDM OFDM		802.11g ended Rate (ERP) v Frame For	802.11a


= Complementary Code Keying OFDM = Orthogonal Frequency Division Multiplexing

Backwards compatibility to a/b/g (cont.)

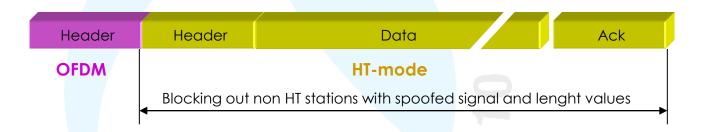
Backwards compatibility to a/b/g (cont.)



- 802.11n supports three compatibility modes
 - Legacy mode
 - Mixed mode
 - Greenfield mode

Legacy mode

802.11n to b/g compatibility with Clear-to-send to self



Backwards compatibility to a/b/g (cont.)

Mixed mode

802.11n to a/g compatibility with Legacy header

Greenfield mode

No backwards compatibility to a/b/g

Future of 802.11n

- Standard has been ratified September 2009 after years of discussions. (IEEE 802.11n-2009)
- Standard is based on 802.11n Draft 2 specifications with two streams, all other functions are optional.
- Interoperability remains a question mark for pre-N products
- New products supporting technical features like:
 - Up to four spatial streams
 - Transmit Beamforming
 - Direct Link Setup ... and many more

Thank you for your attention

