Inside 802.11n Technical details about the new WLAN standard

presented by Rolf Leutert Leutert NetServices <u>www.wireshark.ch</u>

Cisco PSE Day March 2009

© Leutert NetServices 2009

Agenda Inside 802.11n

- Design goals for 802.11n
- 802.11n physical layer improvements
- 802.11n MAC layer improvements
 - How to analyze 802.11n

Throughput measurement

Overview WLAN standards & frame types

Backwards compatibility to 802.11a/b/g

Future of 802.11n

Design Goals for 802.11n

IEEE 802.11n is a proposed amendment to the IEEE 802.11-2007 wireless networking standard

Significantly improve PHY layer transmission rate over previous standards, such as 802.11a and 802.11b/g with 'High Throughput' (HT) options

Increasing the MAC layer transfer rate to achieve a minimum of 100 Mbps data throughput

Maintain backward compatibility with existing IEEE WLAN legacy solutions (802.11a/b/g)

How the Goals are achieved

- A combination of technical functions at PHY and MAC layers are added to the existing 802.11 standard:
- Increasing the physical transfer rate with new modulation scheme and timing up to 600Mbps
- New multi-streaming modulation technique using MIMO (multiple input, multiple output antennas)
- Joining two adjacent channels with Channel Bonding
- ✓ Support for frame aggregation A-MPDU & A-MSDU
- New Block Acknowledgments

PHY layer improvements

Modified OFDM

The number of OFDM data sub-carriers is increased from 48 to 52 which improves the maximum throughput from 54 to 58.5 Mbps

Improved Forward Error Correction

FEC is a system of error control whereby the sender adds redundant data to allow the receiver to detect and correct errors. 3/4 coding rate is improved with 5/6 boosting the link rate from 58.5 to 65 Mbps

PHY layer improvements (cont.)

Shorter Guard Interval (GI)

The GI between OFDM symbols is reduced from 800ns to 400ns and increases throughput from 65 to 72.2 Mbps

Channel Bonding

Doubling channel bandwidth from 20 to 40 MHz slightly more than doubles rate from 72.2 to 150 Mbps

Spatial Multiplexing

Support of up to four spatial streams (MIMO) increases throughput up to 4 times 150 to 600 Mbps

Short Guard Interval (GI)

LEUTER

OFDM carries the bits in so called symbols, the gap between the symbols is the Guard Interval.

Short Guard Interval can be used, if the multipath delay is low and symbols from streams do not interfere.

Channel Bonding

802.11n supports bundling of two 20 MHz channels

Select a control channel # and the channel offset Both channels must fit inside allowed frequency range A-band does not allow to select channel # manually

Dynamic Frequency Selection	(DFS) VChannel 44 5220 MHz
Band 1 - 5.150 to 5.250 GHz Band 2 - 5.250 to 5.350 GHz Band 3 - 5.470 to 5.725 GHz	
< NONE > 20 MHz Below 40 MHz Above 40 MHz	

Configuration on Cisco AP1250

AirPcap N Wireless Capture Device
'S
5220 [A 44]
+1
-1 0 +1

Configuration on AirPcap N

Channel Bonding 2.4 GHz Band

LEUTER

Ne

Cisco PSE Day March 2009

Channel Bonding 5 GHz Band

LEUTER

Ne

© Leutert NetServices 2009

Channel Allocation 5 GHz Band

Frequency Band	Channel ID	FCC (GHz)	ETSI (GHz)	MKK (GHz)	
				5.470	
	34			5.170	
	36	5.180	5.180		
Lower	38			5.190	
Band	40	5.200	5.200		
UNIL1	42			5.210	
onn-r	44	5.220	5.220		
	46			5.230	
	48	5.240	5.240		
Middle	52	5.260*	5.260	5.260	
Band	56	5.280*	5.280	5.280	
	60	5.300*	5.300	5.300	
0111-2	64	5.320*	5.320	5.320	
	40.0	E 500±	5 500	5 500	
	100	5.500"	5.500	5.500	
	104	5.52U° 5.540*	5.520	5.520	
	108	5.540"	5.540	5.540	
High	112	5.560*	5.560	5.560	
Band	116	5.580*	5.580	5.580	
UNII-2	120	5.600*	5.600	5.600	
extended	124	5.620*	5.620	5.620	
	128	5.640*	5.640	5.640	
	132	5.660*	5.660	5.660	
	136	5.680*	5.680	5.680	
	140	5.700*	5.700	5.700	
	149	5.745			
Upper	153	5,765			
Band	157	5.785			
UNII-3/ISM	161	5.805			
ISM	165	5.825			

Available non-overlapping channels					
FCC (USA and Canada)	24				
ETSI (Europe)	19				
MKK (Japan)	19				

Transmit Power Contro for	(TPC) required
FCC (USA and Canada)	Band 2,2e
ETSI (Europe)	Band 1,2,2e
MKK (Japan)	Band 1,2,2e

Dynamic Frequency Selection (DFS) required for							
FCC* (USA and Canada)	Band 2,2e						
ETSI (Europe)	Band 1,2,2e						
MKK (Japan)	Band 1,2,2e						

Some channels only allowed for inhouse use

*New stricter FCC DFS2 rules valid off July 20, 2007

Multiple-Input, Multiple-Output (MIMO)

802.11n supports Multi-Streaming Modulation

MIMO is the most difficult aspect of 802.11n to understand.

In MIMO, the transmitting and receiving stations each have multiple RF chains with multiple antennas. The 802.11n standard mandates at least two and up to four spatial streams.

Multipath (RF signal reflection between transmitter and receiver) is normally the enemy of performance, but with MIMO it is used constructively.

Spatial Multiplexing

A signal stream is broken down into multiple signal streams, each is transmitted from a different antenna. Each of these "spatial" streams arrives at the receiver with different amplitude (signal strength) and phase.

MIMO Combinations

Modulation Coding Scheme (MCS)

802.11n introduces a new MCS

802.11 b/g adapts to channel conditions by selecting the highest of 12 possible rates from 1 to 54 Mbps

The 802.11n standard will allow some 77 possible MCS' some compulsory, some optional

MCS selects, based on RF channel conditions, the best combination of 8 data rates, bonded channels, multiple spatial streams, different guard intervals and modulation types

MCS Configuration

Data Rates:				Best Range Be					Best Throughput Default									
	6.0	Mb/se	• •	Requ	ire		○ Enable							O Disable				
	9.0	Mb/se	• •	 Require Require 				○ Enable						◯ Disable				
	12.0	Mb/see	• •						OEn	able				ODisable				
	18.0	Mb/see	• •	Require					OEn	able				O Disable				
	24.0	24.0Mb/sec 💿 Require					C Enable						ODisable					
	36.0Mb/sec 💿 Require													O Disable				
	48.0	Mb/see	b/sec 💿 Require					◯ Enable					ODisable					
	54.0	Mb/see		Requ	ire				OEn	able				0	Disable	е		
MCS Rates:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
Enable	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲		
Disable	\bigcirc	0	0	0	0	0	0	0	\circ	0	0	0	0	0	0	0		
1 s				patial stream						2 spatial streams								
	Scr	eer	nshc	ot C	isco) AF	2125	50										

MCS Rate Chart

					0 MHz	Channe	el			40 MHz Channel										
MCS Rate Chart			1 St (non l	ream MIMO)			2 Str (Mil	eams MO)			1 St (non	ream MIMO)		2 Streams (MIMO)						
000.44.	MCS Rate	0	1	2	3	8	9	10	11											
802.11h	Mhaa	6.5	13	19.5	26	13	26	39	52					n.a.						
2.4GHz	with	39	52	58.5	65	78	104	117	130	n.a.										
GI = 800115	MCS Rate	4	5	6	7	12	13	14	15											
		_			;			_						-						
802 11n	MCS Rate	0	1	2	3	8	9	10	11	0	1	2	3	8	9	10	11			
5GH7	Mhne	6.5	13	19.5	26	13	26	39	52	13.5	27	40.5	-54	27	54	81	108			
GI = 800 ns	мюрз	39	52	58.5	65	78	104	117	130	81	108	121.5	135	162	216	243	270			
01 - 000113	MCS Rate	4	5	6	7	12	13	14	15	4	5	6	7	12	13	14	15			
802 11n	MCS Rate	0	1	2	3	8	9	10	11	0	1	2	3	8	9	10	11			
5GH7	Mhns	7.2	14.4	21.7	28.9	14.4	28.9	43.3	57.8	15	30	45	60	30	60	90	120			
GI = 400 ns	niops	43.3	57.8	65	72.2	86.7	115.6	130	144.4	90	120	135	150	180	240	270	300			
400113	MCS Rate	4	5	6	7	12	13	14	15	4	5	6	7	12	13	14	15			

How to analyze 802.11n

802.11a/b/g/n USB wireless Adapter with two external antennas

📶 (Untitled) - Wireshark										
<u>Eile E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics <u>H</u> elp										
Eilter: Expression Clear Apply										
802.11 Channel: 5260 [A 52] Channel Offset: +1 FCS Filter: All Frames Comption Mode: None Wireless Setting	igs									
Nr - Time Channel TX Rate RSSI Source Destination Protocol DTIM Info										
1 0.000000 5260 [A 52] 6.0 Mbps -21 Cisco_a0:8d:c0 Broadcast IEEE 802.11 0 Beacon frame, 2 0.104528 5260 [A 52] 6.0 Mbps -14 Cisco_a0:8d:c0 Broadcast IEEE 802.11 1 Beacon frame,	SI SI									
3 0 4 0 Wireshark: Capture Interfaces										
6 0 Description IP Packets Packets/s Stop	0 10 1									
8 0 🛒 Adapter for generic dialup and VPN capture unknown 0 0 Start Options Details	51									
AirPcap USB wireless capture adapter nr. 00 Unknown 1209 9 Start Options Details										
Fn am Broadcom NetXtreme Gigabit Ethernet Driver (Microsoft's Packet Scheduler) 192.168.0.202 49 0 Start Options Details										
IEEE Help IEEE										

Cisco PSE Day March 2009

HT Capability Announcement in Beacons

🔀 WLAN HT Beacon.pcap - Wireshark
<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics <u>H</u> elp
Expression Clear Apply
802.11 Channel: 5260 [A 52] Channel Offset: +1 FCS Filter: All Frames Construction Mode: None Wireless Settings Decryption Keys
Nr - Time Channel TX Rate RSSI Source Destination Protocol DTIM Info
1 0.000000 5260 [A 52] 6.0 Mbps -21 Cisco_a0:8d:c0 Broadcast IEEE 802.11 1 Beacon frame, SN=2215, FN=
2 0.104363 5260 [A 52] 6.0 Mbps -25 Cisco_a0:8d:c0 Broadcast IEEE 802.11 0 Beacon frame, SN=2216, FN=
🖬 HT Capabilities Info: 0x186e
0 = HT LDPC coding capability: Transmitter does not support receiving LDPC coded pac
1. = HT Support channel width: Transmitter supports 20MHz and 40MHz operation
11 = HT SM Power Save: SM enabled (0x0003)
0 = HT Green Field: Transmitter is not able to receive PPDUs with Green Field (GF) μ
1 = HT Short GI for 20MHz: Supported
1 = HT Short GI for 40MHz: Supported
0 PHT TX STBC: Not Supported
00 = HT Rx STBC: No Rx STBC support (0x0000)
O = HT Delayed Block ACK: Transmitter does not support HT-Delayed BlockAck
1 = HT Max A-MSDU length: 7935 bytes
1 = HT DSSS/CCK mode in 40MHz: will/Can use DSSS/CCK in 40 MHz
O = HT PSMP Support: Won't/Can't support PSMP operation
.0 = HT Forty MHz Intolerant: Use of 40 MHz transmissions unrestricted/allowed
0 = HT L-SIG TXOP Protection support: Not Supported
🖃 A-MPDU Parameters: 0x001b
11 = Maximum Rx A-MPDU Length: 65535 [Bytes]

MAC layer improvements

Frame Aggregation Mechanisms

Aggregate-MAC Service Data Unit (A-MSDU) wraps multiple Ethernet frames in a 802.11 frame up to 8KB

Aggregate-MAC Protocol Data Unit (A-MPDU) allows bursting 802.11 frames up to 64KB

A-MPDU is performed in the software whereas A-MSDU is performed in the hardware

Block Acknowledgement

Block ACK effectively eliminates the need to initiate a new transfer for every MPDU

MSDU Aggregation

Multiple Ethernet frames for a common destination are wrapped in a single 802.11 frame

More efficient than A-MPDU as only one radio- and 802.11 MAC header is applied

Whole frame must be retransmitted if no acknowledge

Aggregated MAC Service Data Units

Cisco PSE Day March 2009

A-MSDU Analysis

D05-1_AMSDU.pcap - Wireshark	
<u>File Edit View Go Capture Analyze Statistics H</u> elp	
	½ 🗐 🗐 (Q, Q, 🗹 👹 🗹 畅 % 🙀
Eilter:	▼ Expression Clear Apply
802.11 Channel: 📕 👻 Channel Offset: 📕 👻 🕴 FCS Filter:	★ Decryption Mode: None Wireless Settings Decryption Keys
No Delta Time TX Rate RSSI Source	Destination Protocol Info
867 0.000129 300.0 Mbps -40 192.168.0.181 868 0.000022 54.0 Mbps -45 869 0.000224 270.0 Mbps -40 192.168.0.181 870 0.000021 54.0 Mbps -45 871 0.000206 270.0 Mbps -41 192.168.0.181 872 0.000021 54.0 Mbps -45	192.168.0.187 UDP Source port: 4071 Destinati Cisco_a0:8d:c0 (RA) IEEE 802 Acknowledgement, Flags= 192.168.0.187 UDP Source port: 4071 Destinati Cisco_a0:8d:c0 (RA) IEEE 802 Acknowledgement, Flags= 192.168.0.187 UDP Source port: 4071 Destinati Cisco_a0:8d:c0 (RA) IEEE 802 Acknowledgement, Flags= we have a set of the set
 ■ Frame 807 (2028 bytes on write, 2028 bytes cap ■ PPI version 0, 84 bytes ■ IEEE 802.11 OoS Data. Flags:F. 	
■ IEEE 802.11 Aggregate MSDU ■ A-MSDU Subframe #1 ■ A-MSDU Subframe #2 ■ A-MSDU Subframe #3	
 A-MSDU Subframe #4 A-MSDU Subframe #5 A-MSDU Subframe #6 A-MSDU Subframe #7 A-MSDU Subframe #8 A-MSDU Subframe #9 A-MSDU Subframe #10 	 All trace files made with: Wireshark Version 0.99.8 (SVN Rev 24492) Cisco AIR-AP1252AG-E-K9; S/W 12.4(10b)JA Buffalo WLI-CG-AG300N; Driver 3.0.0.13

MPDU Aggregation

Multiple Ethernet frames for a common destination are translated to 802.11 format and sent as burst

Elements of an A-MPDUs burst can be acknowledged individually with one single Block-Acknowledge

Only not-acknowledged A-MPDUs are retransmitted

A-MPDU Analysis

🗖 D05-2_AMPDU.pca	p - Wireshark					×
<u>File Edit View G</u> o <u>C</u>	<u>Capture Analyze Statistic</u>	s <u>H</u> elp				
	🖻 🖬 🗙 🎜 🖴	🔍 🗢 🔿 주 🕹		M 😼 🎇		
Eilter:			Expression Clear Apply			
802.11 Channel:	👻 Channel Offse	t: 🚺 👻 FCS Filter:	Decryption Mode: None]	s Settings Decryption Keys	
No Delta Time	TX Rate RSSI	Source	Destination	Protocol	Info	^
66 0.000022	300.0 Mbps -33	192.168.0.180	192.168.0.185	UDP	Source port: 2658 Destinati	17
67 0.000022	54.0 Mbps -44	Buffalo_73:05:af	(TA) Cisco_a0:8d:c0 (RA)	IEEE 802	802.11 Block Ack, Flags=	
68 0.000418	300.0 Mbps -39			IEEE 802	Unreassembled A-MPDU data	
69 0.000026	300.0 Mbps -39			IEEE 802	Unreassembled A-MPDU data	
70.0.000027	300.0 Mbps -47			IEEE 802	Unreassempled A-MPDU data	
	300.0 Mbps -47			TEEE 802	Unreassembled A-MPDU data	-
73 0 000027	300.0 Mbps -47			TEEE 802	Unreassembled A-MPDU data	
74 0.000034	300.0 Mbps -47			TEEE 802	Unreassembled A-MPDU data	
75 0.000132	300.0 Mbps -33	192.168.0.180	192.168.0.185	UDP	Source port: 2658 Destinati	
76 0.000023	54.0 Mbps -45	Buffalo_73:05:af	(TA) Cisco_a0:8d:c0 (RA)	IEEE 802	802.11 Block Ack, Flags=	~
<					<u>0</u>	1
⊞ Frame 75 (162	0 bytes on wire	, 1620 bytes captu	red)			
PPI version 0), 84 bytes	· · · · ·				
■ IEEE 802.11 A	agregate MPDU					
⊞ MPDU #1						
m MPDU #2						
■ MIDU #4						
MPDU #4						
■ MPDU #6						
MPDU #/						
⊞ MPDU #8						

Block-Acknowledge Mechanism

Rather than sending an individual acknowledge following each data frame, 802.11n introduces the technique of confirming a burst of up to 64 frames with a single Block ACK (BA) frame

The Block ACK even contains a bitmap to selectively acknowledge individual frames of a burst (comparable to selective acknowledges of TCP)

The use of combined acknowledges can be requested by sending a Block ACK Request (BAR)

Block-Ack Mechanism (cont.)

Start Sequence # 128 +1111 1111 1111 1111= 192

Block-ACK Bitmap Analysis

🗖 D05-2_AMPDU.pcap - Wireshark				
Eile Edit View Go Capture Analyze Statistics Help				
$\blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare X 2 = @ \Rightarrow \Rightarrow \Rightarrow T 2 = \square \blacksquare 0 0 0 \square 1 $	🗸 🖂 🎭 💢			
Eilter:				
802,11 Channel: Channel Offset: FCS Filter: Decryption Mode: None	▼ Wireless Settings Decryption Keys			
No Delta Time TX Rate RSSI Source Destination	Protocol Info			
4579 0.000021 54.0 Mbps -47 Buffalo_73:05:af (TA) Cisco_a0:8d:c0 (R/	A) IEEE 802 802.11 Block Ack, Flags=			
4580 0.000369 300.0 Mbps -39	IEEE 802 Unreassembled A-MPDU data			
4581 0.000027 300.0 Mbps -39	TEEE 802 Unreassembled A-MPDU data			
4582 0 000024 300 0 Mbps -47	TEEE 802 Unreassembled A-MPDU data			
4584 0.000031 300.0 Mbps -47	IEEE 802 Unreassembled A-MPDU data			
4585 0.000137 300.0 Mbps -47	IEEE 802 Unreassembled A-MPDU data			
4586 0.000021 300.0 Mbps -47	IEEE 802 Unreassembled A-MPDU data			
4587 0.000021 300.0 Mbps -36 192.168.0.180 192.168.0.185	UDP Source port: 2658 Destinati			
4588 0.000021 54.0 Mbps -47 Buffalo_73:05:at (TA) Cisco_a0:8d:c0 (R4	A) IEEE 802 802.11 Block Ack, Flags= 😒			
□ IEEE 802.11 802.11 Block Ack, Flags:C	A 10 10 10 10 10 10 10 10 10 10 10 10 10			
Type/Subtype: 802.11 Block Ack (0x19)				
■ Frame Control: 0×0094 (Normal)				
Duration: O				
Receiver address: Cisco a0:8d:c0 (00:17:df:a0:8d:c0)				
Transmitter address: Buffalo 73:05:af (00:16:01:73:05:af)				
Block Ack Request Type: Compressed Block (0x02)				
Block Ack (BA) Control: 0x0004				
Block Ack Starting Sequence Control (SSC): 0x56d0				
Block Ack Bitman				
■ Frame check sequence: 0xf47ea4d2 [correct]				
0000 00 00 20 00 69 00 00 02 00 14 00 56 TO 08 C61V.	••			
0020 94 00 00 00 00 17 df a0 8d c0 00 16 01 73 05 af	5			
0030 04 00 d0 56 ff ff ff ff ff ff ff ff a4 d2V	···			

TCP Throughput Measurements with Iperf

TCP Throughput Measurements with Iperf

5 - 15% throughput reduction with WPA2 Encryption

Overview WLAN Standards

Mbps	Coding	Modulation	Description		Description		
1 2	Barker Barker	DBPSK	802.11 DSSS (Clause 15) with ,Long Preamble'				
5.5 11	CCK CCK	DQPSK	802.11b HR/DSSS (Clause with ,Short Pream	• 18) nble'			
6, 9 12, 18 24, 36 48, 54	OFDM OFDM OFDM OFDM	BPSK QPSK 16-QAM 64-QAM	802.11g Extended Rate PHY (ERP)			802.11a	
7.2-72.2 14.4-144.4	OFDM OFDM	MCS 0-7 MCS 8-15	1 Stream 2 Streams	802.11n High Troughput (HT) Extensions			

2.4 GHz

5 GHz

- CCK = Complementary Code Keying
- DBPSK = Differential Binary Phase-Shift Keying
- DQPSK = Differential Quadrature Phase-Shift Keying
- OFDM = Orthogonal Frequency Division Multiplexing

BPSK = Binary Phase-Shift Keying

- QPSK = Quadrature Phase-Shift Keying
- QAM = Quadrature Amplitude Modul.
- MCS = Modulation Coding Scheme

LEUTERT Net ervices

Cisco PSE Day March 2009

© Leutert NetServices 2009

Backwards compatibility to a/b/g

802.11n supports three compatibility modes Legacy mode Mixed mode Greenfield mode

legacy mode

802.11n to b/g compatibility with Clear-to-send to self

Backwards compatibility to a/b/g (cont.)

Access point indicates in 'Beacon' if 'b-only' stations are present

WLAN Non ERP Present.p	pcap - Wireshark			
Eile Edit <u>V</u> iew <u>G</u> o <u>C</u> apture <u>A</u> nalyz	yze <u>S</u> tatistics <u>H</u> elp			
	〗×◇≞│♀⇒ゃ≈∓⊻│══╡९९९∞।≝⊠≋			
Eilter:	✓ Expression Clear Apply			
AirPcap Interface: #00 802.11 Channel:	I: 1 • FCS Filter: Valid Frame • Decryption Mode: None • Wireless Settings Decryption Ke	ys		
No Source	Destination RSSI Protocol Info			
743 Cisco 11:1f:60	Broadcast 43 dB IEEE 802.11 Reacon frame.SN=3961.F	N=0.BT=100.		
744 Cisco 26:49:eb	Broadcast 78 dB IEEE 802.11 Probe Request, SN=15, FN	=0, SSID: B		
745 Cisco 11:1f:60	Cisco 26:49:eb 43 dB IEEE 802.11 Probe Response, SN=3962	, FN=0, BI=10		
746	Cisco 11:1f:60 (RA) 78 dB IEEE 802.11 Acknowledgement			
747 Cisco 26:49:eb	Broadcast 77 dB IEEE 802.11 Probe Request, SN=16, FN	=0, SSID: B		
748 Cisco 11:1f:60	Cisco 26:49:eb 43 dB IEEE 802.11 Probe Response, SN=3963	, FN=0, BI=10		
749 Cisco 11:1f:60	Cisco 26:49:eb 42 dB IEEE 802.11 Probe Response, SN=3963	, FN=0, BI=10		
750	PhilipsC 45:7f:2f (RA) 65 dB IEEE 802.11 Clear-to-send			
751 PhilipsC_45:7f:2f	f Cisco 11:1f:60 60 dB IEEE 802.11 Null function (No data), SN=3673, F		
	Bliling AF. 76.06 (BS) A0 dB TBBB 000 11 Schmidt damment			
	······································			
ERP Information: Non-ERP STAS, use protection, short or long preambles				
Tag Number: 42 (ERP Information)				
Tag length: 1				
Tag interpretation: ERP info: 0x3 (Non-ERP STAs, use protection, short or long preambles)				

Backwards compatibility to a/b/g (cont.) OFDM stations changes to 'Protected Mode'

🗷 WLAN Non ERP Present.p	cap - Wireshark	
<u>Eile E</u> dit ⊻iew <u>G</u> o <u>C</u> apture <u>A</u> nalyz	e Statistics Help	
	× % 🖪 🖻 🗢 🗢 🔂 💆	
Eilter:	▼ Expression ⊆lear	Apply
AirPcap Interface: #00 802.11 Channel:	1 FCS Filter: Valid Frame Valid Frame	ion Mode: None 🛛 👻 🗍 Wireless Settings Decryption Keys
No. + Source	Destination RSSI P	rotocol Info
1150	Philipsc_45:7f:2f (RA) 65 dB I	EEE 802.11 Clear-to-send
1151 192.168.0.201	192.168.0.100 59 dB H	TTP GET /appsui.js HTTP/1.1
1152	PhilipsC_45:7f:2f (RA) 40 dB I	EEE 802.11 Acknowledgement
1153	Cisco 11:1f:60 (RA) 44 dB I	EEE 802.11 Clear-to-send
1154 192.168.0.100	192.168.0.201 40 dB H	TTP Continuation or non-HTTP
1155	Cisco 11:1f:60 (RA) 62 dB I	EEE 802.11 Acknowledgement
1156	Cisco 11:1f:60 (RA) 44 dB I	EEE 802.11 Clear-to-send
1157 192.168.0.100	192.168.0.201 40 dB H	TTP Continuation or non-HTTP
1158	Cisco 11:1f:60 (RA) 62 dB I	EEE 802.11 Acknowledgement
1159	Cisco 11:1f:60 (RA) 44 dB I	EEE 802.11 Clear-to-send
1160 192.168.0.100	192.168.0.201 41 dB H	TTP Continuation or non-HTTP
1161	Cisco 11:1f:60 (RA) 62 dB I	EEE 802.11 Acknowledgement

OFDM (ERP) stations are sending control frames ,**Clear-to send to self**' (CTS-to-self) before each data frame to reserve time slot

Backwards compatibility to a/b/g (cont.)

Reduced data throughput in mixed environments

	Data Rate (Mbps)	Approximate Throughput (Mbps)	Throughput as a Percentage of 802.11b Throughput
802.11b	11	6	100%
802.11g-with 802.11b clients in cell (CTS/RTS)	54	8	133%
802.11g-with 802.11b clients in cell (CTS-to-self)	54	13	217%
802.11g (no 802.11b clients in cell)	54	22	367%
802.11a	54	25	417%

Source: Cisco Systems

Throughput improvement:

Upgrade of all 802.11b stations to 802.11g

Backwards compatibility to a/b/g (cont.)

🔈 Mixed mode

802.11n to a/g compatibility with Legacy header

📥 Greenfield mode

ervices

No backwards compatibility to a/b/g

Future of 802.11n

Standard ratification in January 2010?

The Australian Commonwealth Scientific and Industrial Research Organization (CSIRO) holds OFDM patent and may delay ratification of 802.11n

Interoperability remains a question mark for pre-N products

New products supporting technical features like: Up to four spatial streams Transmit Beam forming Direct Link Setup ... and many more

The End

Thank you for your attention

I would enjoy to meet you again in one of our trainings

Rolf Leutert Leutert NetServices <u>leutert@wireshark.ch</u> <u>www.wireshark.ch</u>

